main-article-of-news-banner.png

How to get AI analytics right

 

Enterprises of all sizes and across virtually all markets are scrambling to augment their analytics capabilities with artificial intelligence (AI) in the hopes of gaining a competitive advantage in a challenging post-pandemic economy.

Plenty of anecdotal evidence points to AI’s ability to improve analytics, but there seems to be less conversation around how it should be implemented in production environments, let alone how organizations should view it strategically over the long term

 

Web, Red, Programación

 

Start with a plan

AI may be the latest iteration of digital technology, but like its predecessors, it is not infallible. More often than not, success hinges on deployment and integration into existing environments, not the technology itself. Before rushing headlong into the AI tsunami, enterprise executives would be wise to consider how they plan to use it and to what end.

Depending on your company’s objectives, you’ll need to pepper your analytics with varying levels of these three flavors of AI. But how can these be scaled to production levels quickly and efficiently without losing control?

In a recent article on eWeek, SparkBeyond U.S. data science head Ryan Grosso offered up a number of tips to help “bridge the gap between analytic aspirations and ability.” Heading the list is the need to develop in-house analytics talent (as in, human talent) capable of managing the data science tasks AI requires. In addition, you’ll need to create hybrid teams with expertise in various domains to replace the often siloed hierarchies that take root in complex organizations. The key here is to train data scientists and business executives to speak a common language. Only then should you select and deploy the proper AI-driven analytics platform, preferably one that can be tailored to your needs rather than requiring changes to your processes or business model.

 

Binario, Uno, Cyborg, Cibernética

 

Reading is fundamental

But what, exactly, should AI do once it’s infused into the analytics process? What specific functions should it perform? According to Decipher Zone’s Mahipal Nehra, one of its key capabilities is to read large quantities of text and extract meaning from what is essentially unstructured data. This means AI can provide insight into not just the raw numbers coming from connected devices and monitoring solutions, but also the equally valuable abundance of communication taking place between employees, customers, partners, and other stakeholders. This can lead to valuable insights into consumer experiences, brand recognition, and the organization’s overall reputation. And understanding text is part of the roadmap to full speech recognition, which opens up whole new possibilities in areas like customer relations and self-help applications.

But deploying AI in analytics is not a one-and-done endeavor. Both the software deployment and the data it accesses will be in a constant state of flux, growing and evolving at the speed of modern business. The most valuable insights gleaned from AI will typically require you to change what you’re doing and how you are doing it, which can be difficult, particularly in large organizations. After all the time, effort, and expense of putting this intelligent analytics operation in place, it would be a shame to ignore what it has to say only to be out-performed by a more AI-savvy competitor.

© 2021 LeackStat.com