As the IBM Watson experience shows, the path to AI success is fraught with challenges. Yet overall, it has been a very good year for AI and the companies developing it. So much so that Alphabet CEO Sundar Pichai, in a recent podcast recorded by BBC, says: “I view [AI] as a very profound enabling technology. If you think about fire or electricity or the internet, it is like that, but I think even more profound.”
That profound impact is becoming more pronounced as AI is showing up in more industries, ranging from semiconductor design to software development to voiceovers, farming, distribution, music creation, and even classical sculpting. In all instances, AI is augmenting and possibly replacing human activities while dramatically speeding up development of the final product. In biology, determining the structure of just one protein can take years of laboratory work, but new AI released to the public by the University of Washington can reduce this time to as little as 10 minutes. In the sculpture example, a replica of “Psyche Revived by Cupid’s Kiss,” produced by ABB2, an industrial robot developed by ABB Robotics, required just over 11 days to produce, while the original by 18th-century sculptor Canova required roughly five years. And due to the pandemic, demand for industrial robots has surged in the last year across many industries.
In a recent paper in the journal Nature, Google described how it developed a reinforcement learning deep neural network that designs computer chips faster than humans. Much faster. The paper discusses a chip design that would take engineers months and instead took less than six hours with new AI software at the helm. As noted by CNBC, Google is using AI to design chips that can be used to create even more sophisticated AI systems, further speeding-up the already exponential performance gains through a virtuous cycle of innovation.
On the other side of computing, software to run the applications is also undergoing a similar revolution. GPT-3 — officially the Generative Pre-Trained Transformer 3 — a language model developed by OpenAI has proven capable of generating coherent prose from a text prompt. This is what it was designed to do, but it turns out that it can generate other forms of text as well, including computer code.
According to an Economist story, new software development tools based on AI can suggest context sensitive code in-line, much as Gmail and Outlook now suggests how to complete a sentence in an email, or Word does for text processing. In the case of commercial systems using GPT-3, suggestions can include full code modules to complete tasks such as creating a purchase order. This advance not only reduces the time to develop software but — according to one user — also reduces “cognitive overhead,” since selecting from options presented is easier than developing original code. This is like old school programming where code is imported from a library, though now the programmer does not need to know anything about the library, and the process is almost entirely automated.
One of these new generation software development tools is Copilot, an AI-powered programming tool jointly built by OpenAI and GitHub that is positioned as an augmentation for human programmers. The tool uses Codex, which is based on GPT-3 but fine-tuned for programming tasks. The new system suggests blocks of code from the GitHub repository based on what other programmers have previously written to solve a similar problem.
This AI-enabled automation is beginning to have an impact. In a panel discussion, Sanjeev Vohra, Accenture global lead for applied intelligence, explained that he had observed a “massive shift” in companies toward using technologies like AI, analytics, and machine learning, which is boosting revenue and efficiencies. This shift will lead to a productivity boom, according to Stanford University professor Erik Brynjolfsson. He said AI is already as good as or better than humans at certain applications and encouraged businesses to focus on incorporating the technology into work processes. Those that do, he says, will likely soon see an acceleration in productivity.
These examples and trends suggest that AI is entering take-off mode just as we exit an economic downturn caused by the pandemic. And incorporating labor saving technology coming out of a downturn is standard operating procedure for many companies. However, this time the demand for automation is particularly acute, given the combination of labor shortages and wage growth. Thanks to the availability of mature labor-saving technologies, we’ve already seen companies do more with fewer people over the last year and a half.
© 2021 LeackStat.com
2025 © Leackstat. All rights reserved